Medi Examples
This section provides practical examples of Medi code for various healthcare applications.
Example Categories
- Clinical Decision Support
- Genomic Analysis
- Real-time Patient Monitoring
- Medical Imaging
- Clinical Trials
- Hospital Operations
Featured Example: Diabetes Risk Prediction
Below is a complete example of a diabetes risk prediction model using Medi:
// Diabetes Risk Prediction Model
// Uses federated learning across multiple hospitals
// Configure federation
federated diabetes_prediction {
sites: ["hospital_a", "hospital_b", "hospital_c"],
privacy: {
epsilon: 0.1, // Differential privacy parameter
secure_aggregation: true
}
};
// Load FHIR data from each site
dataset patients = fhir_query("Patient", filter: "age>30");
dataset labs = fhir_query("Observation", filter: "code=glucose,hba1c,bmi");
// Join datasets
dataset training_data = patients
|> join(labs, on: "patient_id")
|> preprocess();
// Define model
model = diabetes_model {
type: "random_forest",
features: ["age", "gender", "bmi", "glucose", "hba1c", "family_history"],
target: "diabetes_diagnosis",
hyperparameters: {
n_estimators: 100,
max_depth: 10
}
};
// Train federated model
diabetes_prediction.train(model, data: training_data);
// Evaluate model
metrics = diabetes_prediction.evaluate();
print("Model accuracy: " + metrics.accuracy);
print("Model AUC: " + metrics.auc);
// Predict for new patients
dataset new_patients = load_csv("new_patients.csv");
predictions = model.predict(new_patients);
// Visualize results
visualize {
plot_roc(metrics, title: "Diabetes Model ROC Curve");
plot_feature_importance(model, title: "Feature Importance");
plot_risk_scores(new_patients, predictions, title: "Risk Distribution");
};
// Generate report
report {
template: "clinical_model",
data: {
model: model,
metrics: metrics,
predictions: predictions
},
output: "diabetes_risk_model_report.pdf"
};